
Context-Aware Tree-Based Convolutional
Neural Networks for Natural Language Inference

Zhao Meng1,2, Lili Mou1,2, Ge Li1,2(B), and Zhi Jin1,2(B)

1 Key Laboratory of High Confidence Software Technologies, Peking University,
Ministry of Education, Beijing, China

doublepower.mou@gmail.com, {lige,zhijin}@sei.pku.edu.cn
2 Software Institute, Peking University, Beijing, China

zhaomeng.pku@outlook.com

Abstract. Natural language inference (NLI) aims to judge the relation
between a premise sentence and a hypothesis sentence. In this paper,
we propose a context-aware tree-based convolutional neural network
(TBCNN) to improve the performance of NLI. In our method, we uti-
lize tree-based convolutional neural networks, which are proposed in our
previous work, to capture the premise’s and hypothesis’s information. In
this paper, to enhance our previous model, we summarize the premise’s
information in terms of both word level and convolution level by dynamic
pooling and feed such information to the convolutional layer when we
model the hypothesis. In this way, the tree-based convolutional sentence
model is context-aware. Then we match the sentence vectors by heuris-
tics including vector concatenation, element-wise difference/product so
as to remain low computational complexity. Experiments show that the
performance of our context-aware variant achieves better performance
than individual TBCNNs.

Keywords: Context-awareness · Tree-based convolutional neural net-
work · Natural language inference

1 Introduction

Natural language inference (NLI), also known as recognizing textual entailment,
is an important task in natural language processing (NLP), and has profound
impact on other NLP applications [1,2], including paraphrase detection [3], ques-
tion answering [4], and automatic summarization [5]. Formally, NLI aims to judge
the relation between two sentences, called a premise sentence and a hypothesis
sentence, respectively. The objectives of NLI are Entailment, Contradiction,
and Neutral, where Entailment means the hypothesis sentence can be entailed
from the premise sentence, Contradiction means the two sentences are con-
tradictory to each other, and Neutral means the two sentences are logically
independent to each other [2]. Examples are illustrated in Table 1.

Traditional approaches to NLI mainly focus on feature engineering [4] and for-
mal reasoning [6]. Recently, neural networks have become one of the mainstream
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approaches to almost every NLP task, including natural language inference.
Researchers have applied various neural models, e.g., recurrent neural networks
(RNNs) [7,8], to capture sentence-level meanings; then heuristic matching or
word-by-word attention mechanisms are used to classify the relation between the
premise and the hypothesis. While attention mechanisms typically yield higher
performance, they are more computationally intensive than heuristic matching
in terms of complexity order: O(n2) versus O(n), where n is the number of words
in a sentence. Therefore, heuristic matching is still a hot research topic in the
NLP community, especially when complexity is a major concern.

In our previous work [9], we apply a tree-based convolutional neural network
(TBCNN) as the underlying sentence model and then match the premise and
the hypothesis by heuristics like vector concatenation, element-wise product,
and element-wise difference. Such approach has achieved state-of-the-art perfor-
mance in the complexity of O(n), justifying the rationale of using TBCNN as
the underlying sentence model.

However, the main shortcoming of this model is that the premise and the
hypothesis are modeled independently, that is, when extracting features of the
hypothesis by tree-based convolution, the model is unaware of the information
of the premise. Evidence in the literature shows that context-awareness may
be important in sentence pair modeling, which means that it is important to
concern the information of the other sentence when we are modeling on one of the
sentences: Rocktäschel et al. [8] propose a single-chain RNN that runs through
both sentences, and achieve higher performance than two separate RNNs. This
could be intuitively thought of as such that, in Table 1 for example, it is valuable
to know the phrase drinking orange juice in the premise, when we model drinking
juice in the hypothesis. Likewise, the phrase An older man provides a useful hint
of the contradiction to Two women. Hence, we are curious whether such context-
awareness can benefit our TBCNN model.

Table 1. Examples in the Stanford Natural Language Inference (SNLI) dataset. The
classification objectives of NLI are Entailment, Contradiction, and Neutral. The
Neutral class indicates two irrelevant sentences.

Premise

An older man is drinking orange juice at a restaurant

Hypothesis Label

A man is drinking juice Entailment

Two women are at a restaurant drinking wine Contradiction

A man in a restaurant is waiting for his meal to arrive Neutral

In this paper, we propose a context-aware tree-based convolutional neural
network to improve the performance of NLI. Our idea is to summarize the
premise’s knowledge as fixed-size vectors, which are fed to the tree-based convo-
lutional layer when we model the hypothesis. Then two sentences’ information
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is matched by heuristics as in [9]. In this way, the underlying sentence model
is context-aware, but the overall complexity remains low, i.e., O(n), in contrast
to word-by-word attention mechanisms. We conduct our experiments on a large
open dataset, the Stanford Natural Language Inference (SNLI) Corpus [10], and
achieve better performance than our previously published TBCNN model did.

2 Related Work

In past years, researchers have mainly focused on feature-based approaches to
natural language inference. For example, Harabagiu et al. [4] use linguistic knowl-
edge and lexical alignment to decide the extent to which a sentence can be
entailed from another. Bos et al. [6], on the other hand, use formal reasoning by
combining shallow (word overlap) and deep (semantic parsing) NLP methods.
While reasoning approaches can search for a proof in logical forms for entailment
recognition, their scope and accuracy are highly limited.

Recent advances in neural networks bring new methods to NLI, which can be
viewed as a task of sentence pair modeling, that is, the goal is to determine the
relation between a pair of sentences (the premise and the hypothesis). Typically,
these approaches involve two steps: sentence modeling and matching.

2.1 Sentence Modeling

In this step, the goal is aimed at capturing the meaning of a sentence. Kalch-
brenner et al. [11] and Kim [12] use convolutional neural networks (CNNs) to
model sentences; in CNNs, a sliding window extracts features of neighboring
words. Recurrent neural networks (RNNs) iteratively pick up words in a sen-
tence by keeping one or a few hidden states [13]. Socher et al. [14] propose
recursive neural networks—which utilize a tree structure and—by propagating
information recursively from leaf nodes to the root to summarize a sentence as a
vector. In our previous work [15], we propose a tree-based convolutional neural
network (TBCNN), which combines the merits of CNNs and recursive nets: it is
structure-sensitive as recursive nets and has short propagation paths like CNNs.
We have achieved state-of-the-art performance in several sentence classification
tasks with TBCNN, showing its effectiveness. Based on the above sentence mod-
els, many studies build sentence pair models upon RNNs [7,8], CNNs [16,17],
etc.

2.2 Sentence Matching

To determine the relation between a pair of sentences, Zhang et al. [17] and Hu
et al. [16] concatenate the vectors of each sentence; He et al. [18] use Euclid-
ean distance, cosine, and element-wise absolute difference as features. Other
researchers compute word-by-word similarity matrices [3,7].

Recently, Rocktäschel et al. [8] demonstrate that context-awareness is impor-
tant in sentence matching. They propose several methods including single-chain
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(a) Modeling premise with
context-free TBCNN

Hypothesis

Premise

(b) Modeling hypothesis with 
context-aware TBCNN

(c) Sentences matching
with heuristics

Fig. 1. The context-aware TBCNN model.

RNNs, static attention, and word-by-word attention, outperforming separate
underlying sentence models. Wang et al. [19] further improve the performance
by developing more elegant attention methods.

Although word-by-word attention and similarity matrices usually outperform
simple matching heuristics, they are of higher overall complexity order, i.e.,
O(n2). In this paper, we focus on O(n) methods: we enhance the TBCNN model
with context-awareness, but remain in low complexity.

3 Our Approach

In this section, we describe our approach in detail. Subsection 3.1 provides an
overview of our approach. Subsection 3.2 introduces the context-free tree-based
convolutional neural network (TBCNN), which serves as the base model. We
propose the context-aware TBCNN variant in Subsect. 3.3. Then we present
matching heuristics and the training objective in Subsects. 3.4 and 3.5, respec-
tively.

3.1 Overview

Figure 1 depicts the overview of our model. Concretely, our model has three main
components:
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– First, we apply TBCNN to capture the meaning of the premise (Fig. 1a).
This part is essentially the same as the original context-free (i.e., individual)
TBCNN model in [9].

– Then, we design another TBCNN to model the hypothesis (Fig. 1b). Contrary
to previous work, the tree-based convolution here is aware of the premise’s
information. This is accomplished by summarizing the premise as fixed-size
vectors, which are fed to the convolutional layer to interact with the hypoth-
esis.

– After sentence modeling, we match the two sentences’ vectors by heuristics
including concatenation, element-wise product and difference. Finally, we use
a softmax layer for classification. (See Fig. 1c.)

embracing

ROOT

women are go

root

nsubj aux advcl, xcomp

two
num mark dobjnsubj aux

while holding to packages

Fig. 2. Dependency parse tree

3.2 Tree-Based Convolution

The tree-based convolutional neural network (TBCNN) is proposed to model
the parse trees of both programming languages [20] and natural languages [15].
In this part, we elaborate the process of tree-based convolution without context
awareness, which is used to model the premise sentence in the NLI task.

First, we apply the Stanford parser1 [21] to convert a sentence to a depen-
dency tree, illustrated in Fig. 2. In our notations, an edge a r−→ b refers to a being
governed by b with the dependency type r. In total, we have approximately 30
different types (e.g., nsubj, dobj); other rare relations are mapped to a special
type default in our study.

Then we perform the tree-based convolution over the dependency tree. We
use pretrained word embeddings [22] as input signals. A subtree-based sliding
window extracts structural features as the output of the convolution (denoted
as y). Formally, given a parent node p and its child nodes c1, · · · , cn, we have

y = f

(
Wpp+

n∑

i=1

Wr[ci]c+ b

)
(1)

1 http://nlp.stanford.edu/software/lex-parser.shtml.
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as detected features of the tree-based convolution at a certain position. Here,
bold letters p and ci refer to word embeddings of corresponding nodes; b is the
bias vector. f is a nonlinear function; we used rectified linear units (ReLU) in
our experiments, given by

f(x) =

{
x, if x > 0
0, otherwise

(2)

Notice that we have the same number of detected features y’s and words
in the original sentence, and that the number varies in different data samples.
Hence, we apply dynamic pooling to summarize the features extracted by con-
volution. Specifically, a max-pooling operator takes the maximum value in each
dimension of all features along the dependency tree. Suppose the tree-based con-
volutional layer extracts m features of nc dimensions, the pooling layer outputs
a vector πc

premise, its j-th dimension being

πc
premise[j] = max

{
y1[j],y2[j], · · · ,ym[j]

}
, 1 ! j ! nc (3)

The superscript c indicates that the features are pooled from those after
convolution; the subscript suggests the features correspond to the premise. In
all, πpremise provides summarized information of the premise and is used for
sentence matching, described in Subsect. 3.4.

3.3 Context-Awareness for Tree-Based Convolution

As has been discussed in previous sections, context-awareness is important to
sentence pair modeling, including the task of natural language inference. In this
subsection, we propose a context-aware TBCNN variant to model the hypothesis
sentence, that is to say, when we extract features of the hypothesis by tree-based
convolution, we are equipped with the information of the premise sentence so
that the second sentence model may focus on more relevant information rather
than merely extract generic features of the sentence.

Concretely, we apply dynamic pooling to summarize the knowledge of the
premise as fixed-size vectors and feed the vectors to the tree-based convolutional
layer when modeling the hypothesis. More specially, we leverage two sets of
features, which are of different abstraction levels, from the premise sentence:

– Convolution-level features. In Subsect. 3.2, we have summarized the
premise’s information as a vector πc

premise. It is natural to use such knowl-
edge in the context-aware TBCNN model.

– Word-level features. In addition to the above convolution-level features, we
also pool the raw word embeddings in the premise sentence as a vector, given
by

πw
premise[j] = max

{
w1[j],w2[j], · · · ,wm[j]

}
, 1 ! j ! ne (4)

Similar to Eq. (3), we have m vectors of word embeddings w1, · · · ,wm, and
ne denotes embeddings’ dimension. The superscript w indicates that this set
of features is of word level.
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After obtaining the convolution-level and word-level features, πc
premise and

πw
premise, respectively, we feed them to the tree-based convolutional layer where

we extract the hypothesis’s features. We modify the convolution formula (1) as
follows.

y = f

(
Wpp+

n∑

i=1

Wr[ci]ci +W cπc
premise +Wwπw

premise + b

)
(5)

In the above equation, Wp, Wr[ci], and b are the same weights and bias as
in Eq. (1) because the tree-based convolution operator detects general structural
information of sentences. However, during the interaction, we also provide feature
detectors (convolution operators) with the premise’s information πc

premise and
πw
premise, linearly transformed by the weight matrices W c and Ww, respectively.
After the context-aware convolution process, we obtain a set of features over

the dependency tree of the hypothesis sentence. Then we use max pooling to
summarize them as a vector πc

hypothesis in a same way as Eq. (3). (Details are
not repeated here.) The vector πc

hypothesis, along with that of the premise sen-
tence πc

premise, is used for sentence matching, as will be described in the next
subsection.

3.4 Matching Heuristics

Before matching the two sentences’ vectors, we transform them by a fully-
connected hidden layer

hpremise = f
(
Whπc

premise + bh
)

(6)

hhypothesis = f
(
Whπc

hypothesis + bh
)

(7)

This hidden layer is designed empirically and not the main point of this paper.
Then we apply several heuristics proposed in our previous work [9] to match

the premise and the hypothesis:

– Concatenation of the two sentence vectors:

concat = [hpremise; hhypothesis]

– Element-wise difference:

diff = [hpremise − hhypothesis]

– Element-wise product:

prod = [hpremise ◦hhypothesis]

Then, they are further concatenated as the final features m

m = [concat; diff ; prod]
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which are fed to the softmax output layer. (In the above equations, semicolons
refer to vector concatenation.)

In this way, we manage to integrate the premise’s information to the hypoth-
esis, but remain a low overall complexity of O(n). The computational complexity
lies in the underlying (both context-free and context-aware) sentence models.

3.5 Training Objective

Finally, we feed the sentence matching vectorm to a softmax layer as the output.
We use standard cross-entropy loss as our cost function. Let m be the number of
data samples in the training set and nl be the number of labels. Suppose further
t(i) is the one-hot ground truth and y(i) is the output of the softmax layer for
the i-th data sample. The j-th element in t(i) is on (= 1) if the sample belongs
to the j-th class. The training objective is

J = −
m∑

i=1

nl∑

j=1

t(i)j log
(
y(i)j

)

The network is trained by mini-batched stochastic gradient descent with
backpropagation and regularized by dropout.

4 Evaluation

In this section, we describe the dataset of our experiment in Subsect. 4.1. We
present our hyperparameters and settings in Subsect. 4.2. We compare our model
with other models and analyze different context-aware TBCNN variants in detail
in Subsect. 4.3.

Table 2. Statistics of the SNLI dataset.

Train Validation Test

550,152 10,000 10,000

4.1 Dataset

We use the Stanford Natural Language Inference (SNLI)2 [10] to evaluate our
context-aware TBCNN model. SNLI is a large dataset of more than 550k sam-
ples. All samples in SNLI are human-written sentences and are labeled manu-
ally. As illustrated in Table 1, SNLI has three categories of labels: Entailment,
Contradiction, and Neural. Entailment means the hypothesis can be inferred

2 http://nlp.stanford.edu/projects/snli/.
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from the premise, while Contradiction means the two sentences have contradic-
tory meanings. Neural, however, indicates that the premise and the hypothesis
are irrelevant to each other. The labels are roughly equal-distributed in the
dataset. We apply the official split for train/validation/test, which is listed in
Table 2.

4.2 Experimental Settings

In this subsection, we details the experimental settings for our context-aware
TBCNN. All layers including the word embeddings are 300-dimensional. Embed-
dings are pretrained on the Wikipedia corpus and fine-tuned during training. We
use mini-batch stochastic gradient descent and set the mini-batch size to 50. The
above values are chosen empirically mainly following [9]. We tune the following
hyperparameters on the validation test: learning rate is chosen from {3, 1, 0.3,
0.1}. Power decay of learning rate is chosen from {1x, 0.9x, 0.3x}, which is the
residual of learning rate after one epoch; intuitively, they can be thought of
as no, slow, or fast decay. We do not add ℓ2 penalty for convenience and sim-
plicity. Instead, we use dropout [23] to regularize our model. The dropout rate
is chosen from {0, 0.1, 0.2, 0.3, 0.4}. For efficiency of hyperparameter tuning,
we do not conduct meaningless settings (e.g., a larger dropout rate when the
model has ready been underfitting). Our context-aware TBCNN model reaches
its peak performance when the learning rate is 0.3, the power decay is 0.9, and
the dropout rate is 0.3. In the following part of our paper, we report the test
accuracy that corresponds to the highest performance on the validation test.

In order to have a better understanding of the role of convolution-level fea-
tures and word-level features when we model the hypothesis, we have an addi-
tional variant of context-aware TBCNN, where we only leverage the convolution-
level features. That is to say, we only feed πc

premise to the tree-based convolu-
tional layer when modeling on the hypothesis. Word-level features are simply
ignored in this variant. Thus, the output vector of the hypothesis’s convolutional
layer is:

y = f

(
Wpp+

n∑

i=1

Wr[ci]ci +W cπc
premise + b

)
(8)

The above equation is different from Eq. (5) in that we do not have the
Wwπw

premise term. By contrast, the full context-aware TBCNN proposed in
Sect. 3 has two levels of abstraction of the premise.

4.3 Performance

We present the performance of our models in comparison with previously pub-
lished results in Table 3. As we can see, our full context-aware TBCNN model
outperforms the competing approaches which are of O(n) overall complexity,
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Table 3. Context-awared TBCNN compared with other models.

Overall complexity Model Test accuracy (%)

O(n) Unlexicallized features [10] 50.4

Lexicallized features [10] 78.2

Vector sum + MLP [10] 75.3

Vanilla RNN + MLP [10] 72.2

LSTM RNN + MLP [10] 77.6

CNN + cat [9 ] 77.0

GRU w/skip-thought pretraining [24 ] 81.4

Single-chain LSTM RNN [8]+ two-way attention [8] 81.4

82.4

Non-context-aware TBCNN [9 ] 82.1

Full context-aware TBCNN 82.7

O(n2) LSTM+word-by-word attention [8] 83.5

mLSTM [19 ] 86.1

Table 4. Test accuracies of TBCNN variants with different levels of context awareness.

Variants of model Test accuracy (%)

TBCNN w/o context information [9] 82.1

TBCNN w/πc
premise 82.5

TBCNN w/πc
premise and πw

premise 82.7

including two feature-based models (either unlexicalized or lexicalized), and sev-
eral neural network-based models including RNNs and CNNs. Moreover, the pro-
posed context-aware TBCNN model also outperforms the previous context-free
TBCNN variant.

We compare TBCNNmodels of different levels of context awareness in Table 4
so as to have an in-depth analysis of context-awareness. If we only feed the
premise’s convolution-level features to the TBCNN model of hypothesis, we
have an accuracy improvement of 0.4%. This provides consistent evidence of
the effectiveness of context-awareness. By furthering feeding the word-level fea-
tures, we improve the model by another 0.2%, indicating that more awareness
of the premise results in higher performance.

We have to concede that our context-aware TBCNN model does not out-
perform LSTM models with intensive attention mechanisms. However, our com-
plexity is lower than those in order, which is important is retrieval-and-reranking
systems [25]. Our result is even comparable to one word-by-word attention model
with LSTM-RNNs [8], showing the high performance of our model. Experiments
show that context-awareness does improve TBCNN models in the NLI task.
Intuitively, context-awareness helps the model find some relevant parts of the
premise and the hypothesis when the model is judging the relation between the
two sentences. For example, in Table 1, the model is aware of a man and drinking
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orange juice of the premise sentence when modeling on the hypothesis, which
contains the information of two women and drinking wine. Hence it is easier for
the model to judge that the two sentences are contradictory to each other, or,
the hypothesis sentence does not logically follow the premise sentence [2].

5 Conclusion

In this paper, we proposed a context-aware TBCNN model for NLI. The model
can leverage different levels of abstraction from the premise when modeling on
the hypothesis. Such abstraction includes convolution-level features and word-
level features. Our experiments have shown that context-awareness is help-
ful when applied on TBCNN model. Moreover, the overall complexity of our
context-aware TBCNN model remains low despite the newly added mechanism
of context-awareness.
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